This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D"
#include <bits/stdc++.h>
#define all(vec) vec.begin(), vec.end()
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
template <class T>
using V = vector<T>;
constexpr ll INF = (1LL << 60) - 1LL;
constexpr ll MOD = 998244353LL;
constexpr int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
template <class T>
void chmin(T &a, T b) { a = min(a, b); }
template <class T>
void chmax(T &a, T b) { a = max(a, b); }
void debug() { cerr << "ok" << endl; }
template <class T>
void printv(const vector<T> &v) {
for (int i = 0; i < v.size(); i++) cout << v[i] << (i + 1 == v.size() ? '\n' : ' ');
}
#define call_from_test
#include "../DataStructure/DualSegmentTree.cpp"
#include "../Math/Modint.cpp"
#undef call_from_test
struct T {
int a, b;
inline static T id() {
return T{-1, (1LL << 31) - 1LL};
}
inline static T f(const T &x, const T &y) {
return x.a > y.a ? x : y;
}
inline static T g(const T &x, const T &y) { return y; }
};
int main() {
cin.tie(0);
ios::sync_with_stdio(0);
int n, q;
cin >> n >> q;
Segtree<T> seg(n);
for (int co = 0; co < q; co++) {
int ty;
cin >> ty;
if (ty == 0) {
int s, t, x;
cin >> s >> t >> x;
seg.upd(s, t + 1, T{co, x});
} else {
int i;
cin >> i;
cout << seg.get(i).b << '\n';
}
}
}
#line 1 "Test/DualSegmentTree.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/library/3/DSL/2/DSL_2_D"
#include <bits/stdc++.h>
#define all(vec) vec.begin(), vec.end()
#define pb push_back
#define eb emplace_back
#define fs first
#define sc second
using namespace std;
using ll = long long;
using P = pair<ll, ll>;
template <class T>
using V = vector<T>;
constexpr ll INF = (1LL << 60) - 1LL;
constexpr ll MOD = 998244353LL;
constexpr int dx[4] = {0, 1, 0, -1}, dy[4] = {1, 0, -1, 0};
template <class T>
void chmin(T &a, T b) { a = min(a, b); }
template <class T>
void chmax(T &a, T b) { a = max(a, b); }
void debug() { cerr << "ok" << endl; }
template <class T>
void printv(const vector<T> &v) {
for (int i = 0; i < v.size(); i++) cout << v[i] << (i + 1 == v.size() ? '\n' : ' ');
}
#define call_from_test
#line 1 "DataStructure/DualSegmentTree.cpp"
//Range Update Point Get
template <class T>
struct Segtree {
vector<T> dat;
int n;
T e;
Segtree(int n_) {
n = 1;
while (n < n_) {
n <<= 1;
}
dat.resize(2 * n, T::id());
}
void upd(const int &a, const int &b, const T &x, int k, int l, int r) {
if (b <= l || r <= a) {
return;
}
if (a <= l && r <= b) {
dat[k] = T::g(dat[k], x);
return;
}
upd(a, b, x, k << 1, l, (l + r) >> 1);
upd(a, b, x, k << 1 | 1, (l + r) >> 1, r);
}
inline void upd(const int &a, const int &b, const T &x) {
if (a >= b) {
return;
}
upd(a, b, x, 1, 0, n);
}
T get(int k) {
k += n;
T res = dat[k];
k >>= 1;
while (k > 0) {
res = T::f(res, dat[k]);
k >>= 1;
}
return res;
}
};
#line 1 "Math/Modint.cpp"
//from http://noshi91.hatenablog.com/entry/2019/03/31/174006
template <std::uint_fast64_t Modulus>
class modint {
using u64 = std::uint_fast64_t;
public:
u64 a;
constexpr modint(const u64 x = 0) noexcept : a(x % Modulus) {}
constexpr u64 &value() noexcept { return a; }
constexpr const u64 &value() const noexcept { return a; }
constexpr modint operator+(const modint rhs) const noexcept {
return modint(*this) += rhs;
}
constexpr modint operator-(const modint rhs) const noexcept {
return modint(*this) -= rhs;
}
constexpr modint operator*(const modint rhs) const noexcept {
return modint(*this) *= rhs;
}
constexpr modint operator/(const modint rhs) const noexcept {
return modint(*this) /= rhs;
}
constexpr modint operator^(const u64 rhs) const noexcept {
return modint(*this) ^= rhs;
}
constexpr modint &operator+=(const modint rhs) noexcept {
a += rhs.a;
if (a >= Modulus) {
a -= Modulus;
}
return *this;
}
constexpr modint &operator-=(const modint rhs) noexcept {
if (a < rhs.a) {
a += Modulus;
}
a -= rhs.a;
return *this;
}
constexpr modint &operator*=(const modint rhs) noexcept {
a = a * rhs.a % Modulus;
return *this;
}
constexpr modint &operator/=(modint rhs) noexcept {
u64 exp = Modulus - 2;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
constexpr modint &operator^=(u64 exp) {
modint rhs = modint(*this);
a = 1;
while (exp) {
if (exp % 2) {
*this *= rhs;
}
rhs *= rhs;
exp /= 2;
}
return *this;
}
friend ostream &operator<<(ostream &os, const modint &x) {
os << x.a;
return os;
}
friend istream &operator>>(istream &is, modint &x) {
is >> x.a;
return is;
}
};
using mint = modint<MOD>;
#line 28 "Test/DualSegmentTree.test.cpp"
#undef call_from_test
struct T {
int a, b;
inline static T id() {
return T{-1, (1LL << 31) - 1LL};
}
inline static T f(const T &x, const T &y) {
return x.a > y.a ? x : y;
}
inline static T g(const T &x, const T &y) { return y; }
};
int main() {
cin.tie(0);
ios::sync_with_stdio(0);
int n, q;
cin >> n >> q;
Segtree<T> seg(n);
for (int co = 0; co < q; co++) {
int ty;
cin >> ty;
if (ty == 0) {
int s, t, x;
cin >> s >> t >> x;
seg.upd(s, t + 1, T{co, x});
} else {
int i;
cin >> i;
cout << seg.get(i).b << '\n';
}
}
}