This documentation is automatically generated by online-judge-tools/verification-helper
モノイドを Treap 上で管理する。
各ノードは、ある区間を表し、区間内の演算結果を持つ。
eval(t) : ノード t について、ノードに持つ情報を再計算する。
insert(x,m) : Treap に key=x,val=m なるノードを挿入する。
erase(x) : Treap 内の key=x なるノードを全て削除する。
count(x) : Treap 内の key=x なるノードの個数を返す。
order_of_key(x) : Treap 内で、 key が x 未満のノードの個数を返す。
find_by_order(x) : Treap 内で、 x 番目に大きい key を返す。
get(l,r) : Treap内で、 key が [l,r) の範囲内であるノードについての演算結果を返す。
//@docs Docs/ImplicitTreap.md
struct Xorshift {
unsigned int get() {
static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;
unsigned int t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
};
template <class T, class M>
struct Treap {
Xorshift rnd;
struct Node {
T key;
unsigned int pri;
M val, acc;
int siz;
Node *l, *r;
Node(T key, int pri, M val) : key(key), pri(pri), siz(1), l(nullptr), r(nullptr), val(val), acc(val) {}
} *root = nullptr;
using Tree = Node *;
inline T nxt(T x) { return x + 1; }
inline int size(Tree t) {
return !t ? 0 : t->siz;
}
inline M acc(Tree t) {
return !t ? M::id() : t->acc;
}
inline void eval(Tree t) {
if (!t) return;
t->siz = 1 + size(t->l) + size(t->r);
t->acc = M::f(M::f(acc(t->l), t->val), acc(t->r));
}
Tree merge(Tree l, Tree r) { //l内のkey < r内のkey
if (!l || !r) {
return !l ? r : l;
}
if (l->pri > r->pri) {
l->r = merge(l->r, r);
eval(l);
return l;
} else {
r->l = merge(l, r->l);
eval(r);
return r;
}
}
pair<Tree, Tree> split(Tree t, const T &x) { //key<x,x<=key でsplit
if (!t) return make_pair(nullptr, nullptr);
Tree tl, tr;
tl = tr = nullptr;
if (t->key < x) {
tie(tl, tr) = split(t->r, x);
t->r = tl;
eval(t);
tl = t;
} else {
tie(tl, tr) = split(t->l, x);
t->l = tr;
eval(t);
tr = t;
}
return make_pair(tl, tr);
}
void insert(Tree &t, Tree nd) {
Tree tl, tr;
tl = tr = nullptr;
tie(tl, tr) = split(t, nd->key);
t = merge(merge(tl, nd), tr);
}
void erase(Tree &t, const T &x) {
Tree tl, tm, tr;
tl = tm = tr = nullptr;
tie(tl, tm) = split(t, x);
tie(tm, tr) = split(tm, nxt(x));
t = merge(tl, tr);
}
int count(Tree t, const T &x) {
if (!t) return 0;
if (t->key == x) return 1;
if (x < t->key) {
return count(t->l, x);
} else {
return count(t->r, x);
}
}
int order_of_key(Tree t, const T &x) {
if (!t) return 0;
if (x < t->key) {
return order_of_key(t->l, x);
} else if (x == t->key) {
return size(t->l);
} else {
return size(t->l) + 1 + order_of_key(t->r, x);
}
}
T find_by_order(Tree t, const int &x) {
if (x < size(t->l)) {
return find_by_order(t->l, x);
} else if (x == size(t->l)) {
return t->key;
} else {
return find_by_order(t->r, x - size(t->l) - 1);
}
}
M get(Tree &t, int l, int r) { //[l,r)
Tree tl, tm, tr;
tie(tl, tm) = split(t, l);
tie(tm, tr) = split(tm, r);
M res = acc(tm);
t = merge(tl, merge(tm, tr));
return res;
}
inline void insert(const T &x, const M &m) {
Tree nd = new Node(x, rnd.get(), m);
insert(root, nd);
}
inline void erase(const T &x) {
erase(root, x);
}
inline int count(const T &x) {
return count(root, x);
}
inline int order_of_key(const T &x) {
return order_of_key(root, x);
}
inline T find_by_order(const int &x) {
return find_by_order(root, x);
}
inline M get(int l, int r) { //[l,r)
return get(root, l, r);
}
};
#line 1 "DataStructure/ImplicitTreap.cpp"
//@docs Docs/ImplicitTreap.md
struct Xorshift {
unsigned int get() {
static unsigned int x = 123456789, y = 362436069, z = 521288629, w = 88675123;
unsigned int t = x ^ (x << 11);
x = y;
y = z;
z = w;
return w = (w ^ (w >> 19)) ^ (t ^ (t >> 8));
}
};
template <class T, class M>
struct Treap {
Xorshift rnd;
struct Node {
T key;
unsigned int pri;
M val, acc;
int siz;
Node *l, *r;
Node(T key, int pri, M val) : key(key), pri(pri), siz(1), l(nullptr), r(nullptr), val(val), acc(val) {}
} *root = nullptr;
using Tree = Node *;
inline T nxt(T x) { return x + 1; }
inline int size(Tree t) {
return !t ? 0 : t->siz;
}
inline M acc(Tree t) {
return !t ? M::id() : t->acc;
}
inline void eval(Tree t) {
if (!t) return;
t->siz = 1 + size(t->l) + size(t->r);
t->acc = M::f(M::f(acc(t->l), t->val), acc(t->r));
}
Tree merge(Tree l, Tree r) { //l内のkey < r内のkey
if (!l || !r) {
return !l ? r : l;
}
if (l->pri > r->pri) {
l->r = merge(l->r, r);
eval(l);
return l;
} else {
r->l = merge(l, r->l);
eval(r);
return r;
}
}
pair<Tree, Tree> split(Tree t, const T &x) { //key<x,x<=key でsplit
if (!t) return make_pair(nullptr, nullptr);
Tree tl, tr;
tl = tr = nullptr;
if (t->key < x) {
tie(tl, tr) = split(t->r, x);
t->r = tl;
eval(t);
tl = t;
} else {
tie(tl, tr) = split(t->l, x);
t->l = tr;
eval(t);
tr = t;
}
return make_pair(tl, tr);
}
void insert(Tree &t, Tree nd) {
Tree tl, tr;
tl = tr = nullptr;
tie(tl, tr) = split(t, nd->key);
t = merge(merge(tl, nd), tr);
}
void erase(Tree &t, const T &x) {
Tree tl, tm, tr;
tl = tm = tr = nullptr;
tie(tl, tm) = split(t, x);
tie(tm, tr) = split(tm, nxt(x));
t = merge(tl, tr);
}
int count(Tree t, const T &x) {
if (!t) return 0;
if (t->key == x) return 1;
if (x < t->key) {
return count(t->l, x);
} else {
return count(t->r, x);
}
}
int order_of_key(Tree t, const T &x) {
if (!t) return 0;
if (x < t->key) {
return order_of_key(t->l, x);
} else if (x == t->key) {
return size(t->l);
} else {
return size(t->l) + 1 + order_of_key(t->r, x);
}
}
T find_by_order(Tree t, const int &x) {
if (x < size(t->l)) {
return find_by_order(t->l, x);
} else if (x == size(t->l)) {
return t->key;
} else {
return find_by_order(t->r, x - size(t->l) - 1);
}
}
M get(Tree &t, int l, int r) { //[l,r)
Tree tl, tm, tr;
tie(tl, tm) = split(t, l);
tie(tm, tr) = split(tm, r);
M res = acc(tm);
t = merge(tl, merge(tm, tr));
return res;
}
inline void insert(const T &x, const M &m) {
Tree nd = new Node(x, rnd.get(), m);
insert(root, nd);
}
inline void erase(const T &x) {
erase(root, x);
}
inline int count(const T &x) {
return count(root, x);
}
inline int order_of_key(const T &x) {
return order_of_key(root, x);
}
inline T find_by_order(const int &x) {
return find_by_order(root, x);
}
inline M get(int l, int r) { //[l,r)
return get(root, l, r);
}
};